Intracranial Pressure Monitoring
Contents
Introduction “ICP-Monitoring with Spiegelberg Air-Pouch Method” Page 1

ICP-Monitors
ICP-Monitor HDM26.1 & HDM29.1 .. Page 2
ICP-Monitor HDM29.2 .. Page 3

ICP Probes
Epidural Probes .. Page 4
Parenchymal Probes .. Page 5
Ventricular Probes ... Page 6
Ventricular Probes True Tunneling Page 7
Silverline® Ventricular Probes Page 8

Accessories & Software
Accessories, Connecting Cables Page 9
ICP-Lab .. Page 10
MR Safety Information .. Page 10
ICP-Monitoring with Spiegelberg Air-Pouch Method

The Air-Pouch System

The Air-Pouch System consists of a hollow body connected to a pressure transducer by tubing. The pressure transducer, the electronic hardware, and the device for filling the Air-Pouch are integrated in the Brain-Pressure Monitor.

Position of Probe

For intraventricular or intraparenchymal pressure measurement the Air-Pouch is placed in the ventricle or in the parenchyma, respectively. For epidural pressure measurement the Air-Pouch is placed on the dura of the patient.

How it works

The intracranial pressure is transmitted across the thin pouch wall to the air volume in the pouch and transformed into an electric signal by the pressure transducer.

The Monitor

On the digital display, the mean pressure and the amplitude of the pressure wave are shown. At the monitor output, the pulsatile signal is available.

The ICP-Monitor can be connected to all intensive care unit bedside monitors through their pressure transducer input.

A voltage output allows the connection to chart recorders.

Through an interface, a computer can be connected to read out the pressure signal.

The ICP-Monitor zeroes automatically once per hour. This automatic in-vivo zeroing is a unique feature of the Air-Pouch System.

Benefit of Spiegelberg ICP-Monitoring:

- Plug&Play technology
- Simultaneous ventriculostomy and ICP-Monitoring
- Automatic hourly calibration
- Probes MR Conditional
- Cost-efficient
The ICP-Monitor uses the Air-Pouch method for measuring intracranial pressure. It is compatible with the full range of Air-Pouch probes, with the CPP-Monitor and the Compliance-Monitor.

The digital display indicates mean ICP, systolic ICP and diastolic ICP. Additionally, a mains power control light is visible.

The HDM29.1 is equipped with rechargeable batteries that allow more than three hours of independent operation.
Easy to use - precise results

Easier handling in clinical day-to-day life
More than 50% lighter than previous model.

Improved display through latest technology
Clear and distinct display of mean, systolic and diastolic ICP as well as indicator for battery level and battery charge.

Proven Plug&Play function for ease of use
Connect Spiegelberg air-pouch probe, switch on, automatic calibration - done.
Safe and comfortable method of zeroing between ICP-Monitor and bedside monitor with the \(\rightarrow 0 \leftarrow\) button.

Battery operation
The ICP-Monitor is equipped with rechargeable batteries. The monitor can be used up to 6 hours without power supply.

Connectivity options
Two sockets in the back allow connection to a patient bedside monitor and a computer.

ICP-Monitor | HDM29.2

Proven technology in a new design

Technical Information

- **Weight measurement**: 1.5 kg
- **Battery running time**: up to 6 hours
- **Measurement range**: -50 to +100 mmHg
- **Accuracy**: +/- 2 mmHg
- **Operation voltage**: 115-230 V, 50/60 Hz
- **Monitor output**: 5 \(\mu\)V/mmHg/V

Description

ICP-Monitor

REF

HDM29.2
Areas for monitoring

Epidural Probes

Probe 1
Probe 1 is placed concentrically on the dura. It is used when intracranial pressure monitoring with minimum risk of infection is desired.

A burr hole of 11 mm diameter is required. In adults this can be drilled with a standard trepan. For thin skull caps the use of a Martell Drill or hand drill is recommended.

Technical Information
- Material: Polyurethane
- Filling volume: 0.05 - 0.1 cc
- Outer diameter: 2 mm
- Length: 1500 mm
- Air-Pouch diameter: 16 mm
- Burr hole diameter: 11 mm
- Duration of use: Short term, not more than 30 days
- Shelf life: 3 years
- Double packed
- EO sterile
- For single use
- Latex free

Probe 2
Probe 2 is to be used postoperatively after large trepanation. It is placed under the bone flap.

After mobilization of a sufficiently large area of the dura, the probe can be inserted between the dura and the cranial bone through a burr hole.

Technical Information
- Material: Polyurethane
- Filling volume: 0.05 - 0.1 cc
- Outer diameter: 2 mm
- Length: 1500 mm
- Air-Pouch width: 11 mm
- Air-Pouch length: 25 mm
- Duration of use: Short term, not more than 30 days
- Shelf life: 3 years
- Double packed
- EO sterile
- For single use
- Latex free
Parenchymal Probes

Probe 3PN

Probe 3PN measures intraparenchymal pressure.

Probe 3PN is placed in the parenchyma through a burr hole. Probe 3PN can be tunneled with the aid of the tunneling tool ZBH13.001.03.

Probe 3PN is fixed to the skin with a suturing flap.

Probe 3PN with Trocar

Probe 3PN with Trocar measures intraparenchymal pressure.

The Probe is placed in the parenchyma through a burr hole.

Probe 3PN with Trocar is tunneled by means of the trocar in a surgically correct fashion away from the burr hole. To facilitate the tunneling, the air tube is equipped with a connector that is taken up by the trocar.

After tunneling, the trocar is removed and the air tube is connected to the ICP-Monitor by means of the extension.

Probe 3PN is fixed to the skin with a suturing wing.

Probe 3PS

Probe 3PS measures intraparenchymal pressure.

Probe 3PS is placed in the parenchyma through a bolt that is screwed into the cranial bone. A compression screw connection fixes the probe in the bolt and tightens it.
Ventricular Probes

Probe 3 / Probe 3XL

Probe 3 measures intraventricular pressure using an Air-Pouch mounted in the tip region of a dual lumen probe. One lumen transmits the pressure to the Brain-Pressure Monitor. The second lumen is used for drainage of CSF. The measurement of pressure in the parenchyma is also possible. There is no interference of drainage and pressure measurement. As opposed to measurements via CSF coupled pressure transducers, ICP is still transmitted in the case of slit ventricles. Probe 3XL has all the properties of Probe 3. Furthermore, it is equipped with a wider drainage lumen for use in conditions of blood in the CSF.

True Tunneling Probe 7F / 9F

Ventricular probes are tunneled by means of the dual trocar in a surgically correct fashion away from the burr hole. To facilitate the tunneling, the air tube is equipped with a connector, that is taken up by the trocar together with the drainage tube. After tunneling, the trocar is removed and the air tube is connected to the ICP-Monitor by means of the extension. The drainage tube is connected to a drainage kit with the Luer connector.
Silverline® Ventricular Probes

Silverline® Intraventricular Probe

Silverline ventricular probes are tunneled by means of the dual trocar in a surgically correct fashion away from the burr hole. To facilitate the tunneling, the air tube is equipped with a connector, that is taken up by the trocar together with the drainage tube. After tunneling, the trocar is removed and the air tube is connected to the ICP-Monitor by means of the extension. The drainage tube is connected to a drainage kit with the Luer connector. After tunneling, the trocar is removed and the air tube is connected to the ICP-Monitor by means of the extension. The drainage tube is connected to a drainage kit with the Luer connector. Silverline probes incorporate a silver additive intended to reduce the possibility that the surfaces of the device become microbiologically compromised.

Silverline® Intraventricular Probe with Bolt

The Silverline ventricular probe with bolt is fixed in the bone by means of a bolt. After making a burr hole and opening the dura the probe is placed in the ventricle with the bolt in place in the upper region of the probe. Then the bolt is slid down to the burr hole and screwed into the bone. Finally the probe is fixed in the bolt with the clamping nut. The Luer-connector is placed in the drainage tube and connected to a drainage kit. The air tube is connected to the ICP-Monitor. The tip of the probe is equipped with four rows of drainage holes, just like a ventricular catheter. Silverline probes incorporate a silver additive intended to reduce the possibility that the surfaces of the device become microbiologically compromised.
Accessories

The Tunneling Tool
The Tunneling Tool is an accessory for the sterile placement of Probe 3, Probe 3XL, and Probe 3PN.

The Tunneling Tool consists of a metal trocar, a tapered splitable tube, and a guide wire.

The Pole Mount
With the Pole Mount an ICP-Monitor, CPP-Monitor or combinations thereof are securely held on a wall rail or on an IV-pole.

Connecting Cables

Monitor Cables for HDM and CPP

<table>
<thead>
<tr>
<th>Description</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datec-Cardiocap</td>
<td>KBL13.007.00/FV608</td>
</tr>
<tr>
<td>Hellige 4./5. Generation</td>
<td>KBL13.003.00/FV609</td>
</tr>
<tr>
<td>Hewlett Packard/Philips</td>
<td>KBL13.004.00/FV610</td>
</tr>
<tr>
<td>Marquette/GE Carescare</td>
<td>KBL13.005.00/FV612</td>
</tr>
<tr>
<td>Propaq/Mennen</td>
<td>KBL13.009.00/FV617</td>
</tr>
<tr>
<td>Siemens/Draeger, 10-pins (Sirecust)</td>
<td>KBL13.002.00/FV620</td>
</tr>
<tr>
<td>Space-Labs</td>
<td>KBL13.006.00/FV622</td>
</tr>
</tbody>
</table>

Computer Cables RS 232 for HDM and CPP

<table>
<thead>
<tr>
<th>Description</th>
<th>REF</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM-AT, 9 pins, 1.5 m</td>
<td>KBL13.033.00/FV656</td>
</tr>
</tbody>
</table>

Above cables are an extract of our product portfolio. Your cable is not listed? Tell us what you need, we will supply the solution.
I CP-Lab

Data Capture
The ICP Lab software has been written to allow data capture from the Spiegelberg ICP-Monitor, CPP-Monitor, and Compliance-Monitor (CMP) using data connection and a Windows XP up to Windows7 32bit computer.

ICP Lab captures up to five signals simultaneously:

- ICP
- ABP
- CPP
- Compliance
- PVI

Sampling Frequency
The data collection can be made with sampling frequency of up to 100 Hz. The data is then stored in a file using ICM+ software raw signals format ‘.dta’.

Browsing
The ICP Lab software contains some basic tools for signal browsing. The time scale and pressure scale can be chosen individually. Printing of selected time intervals can be performed in black and white or full color on any of the standard printers of your computer.

Advanced Analysis
For more advanced analysis the data can be exported to a text file and then imported to a spreadsheet application like Excel.

However, for best results it should be analysed using specialised software for ICP waveforms analysis like ICM+.

Trial Version
The software will work for one month. After the trial period, you will need to register the software. To register you will need to obtain a license from your distributor. With the license you will get a license number.

Compatibility
ICP Lab uses the same data format as ICM+. It is fully upward compatible. All data files created with ICP Lab can be later analyzed by ICM+.

For more Information, please contact us.
Note: Not for clinical use.

MR Safety Information
Non-clinical testing has demonstrated that Spiegelberg Probes are MR-conditional at 1.5T and 3T. A patient with these devices may be safely scanned in an MR system provided that the MR safety information accompanying the product is followed.
Manufacturer
Spiegelberg GmbH & Co. KG
Tempowerkring 4
21079 Hamburg
Germany
Phone: +49-40-790-178-0
Fax: +49-40-790-178-10
Email: info@spiegelberg.de
Internet: www.spiegelberg.de

Version E02/2015-10-21